
Aayush Gupta

Migrating from Foreground
Service to WorkManager

• Independent Contractor

• Android Developer @ The Calyx
Institute, working on CalyxOS

• Senior Staff Member, DevRel @
XDA Developers (Forums)

• FOSS Developer & Contributor

About Me

3

Index
• Running background tasks in Android

• Introduction to WorkManager

• WorkManager in action

4

Running Background Tasks

Golden Days of Background Tasks

• Simple & easy, no need for
notifications or permission

• Deprecated from Android 8.0+,
will crash app if used

• System apps can still run
background services (not-
recommended)

Service

6

This is Was The Way

• The de-facto way to run
background tasks now,
backwards compatible too

• Needs an ongoing notification
and bunch of permissions

• Android 12 blocks starting FGS
from background unless a
permitted use case

Foreground Service

7

Foreground Service
It’s Still Relevant Though

• Since Android 14, Foreground Service types are required as well as a
dedicated permission for the specific type

• Additionally, Android 14 recommends migrating to WorkManager for data-
sync related jobs

• Android 15 will impose 6 hour time limit on data-sync type services

• Other than data-sync related jobs, Foreground Services are still the preferred
way to run background jobs

8

Introduction to WorkManager

WorkManager
The Cool Kid in the Block

• The primary recommended API for background processing

• Built-upon the Job Scheduler, Foreground Service, and more APIs

• Simple to use and manage

• Compatible with both Java and Kotlin, no dependency upon play services

• Allows to specify multiple constraints to the work as well

• One time and periodic are some of the most used work types

10

Expedited Work
Right Now, Hopefully

• Expedited work runs immediately on triggering

• Requires specifying setExpedited() method while building work

• Affected by App Standby Quotas and Doze restrictions

• Choice to drop work or run as non-expedited on quota exhaustion

• Periodic work cannot be expedited

11

Long-Running Work
10 Minutes Not Enough?

• Works are allowed a time-limit of 10 minutes by the OS

• Long-running work should be considered in case more time is required

• Requires calling setForeground() and overriding getForegroundInfo() methods

• Delegated to FGS above Android 12

• Affected by FGS restrictions too (permissions, constraints, etc)

12

WorkManager in Action

Constraints
Work, But When?

• WorkManager allows specifying several constraints for works

• Build with Constraints.Builder() and apply using setConstraints() method

• Developers can restrict running works based on metered/unmetered data,
battery levels, device activity and more

• Fine-grained network control coming in WorkManager 2.10

• Possible to update existing work constraints too

14

private const val TAG = "UpdateWorker"
private const val UPDATE_WORKER = "UPDATE_WORKER"

fun scheduleAutomatedCheck(context: Context) {
 Log.i(TAG,"Scheduling periodic app updates!")
 WorkManager.getInstance(context)
 .enqueueUniquePeriodicWork(UPDATE_WORKER, KEEP, buildUpdateWork(context))
}

private fun buildUpdateWork(context: Context): PeriodicWorkRequest {
 val updateCheckInterval = Preferences.getInteger(
 context,
 PREFERENCE_UPDATES_CHECK_INTERVAL,
 3
).toLong()

 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.UNMETERED)
 .setRequiresBatteryNotLow(true)

 if (isMAndAbove()) constraints.setRequiresDeviceIdle(true)

 return PeriodicWorkRequestBuilder<UpdateWorker>(
 repeatInterval = updateCheckInterval,
 repeatIntervalTimeUnit = HOURS,
 flexTimeInterval = 30,
 flexTimeIntervalUnit = MINUTES
).setConstraints(constraints.build()).build()
}

Working
The Time is Now

• Developers can do their task in the doWork() method

• Automatically ran in background thread

• Returns a Result in the end

16

override suspend fun doWork(): Result {
 Log.i(TAG, "Cleaning cache")

 PathUtil.getOldDownloadDirectories(appContext).forEach { downloadDir -> // Downloads
 Log.i(TAG, "Deleting old unused download directory: $downloadDir")
 downloadDir.deleteRecursively()
 }

 PathUtil.getDownloadDirectory(appContext).listFiles()?.forEach { download -> // com.example.app
 // Delete if the download directory is empty
 if (download.listFiles().isNullOrEmpty()) {
 Log.i(TAG, "Removing empty download directory for ${download.name}")
 download.deleteRecursively(); return@forEach
 }

 download.listFiles()!!.forEach { versionCode -> // 20240325
 if (versionCode.listFiles().isNullOrEmpty()) {
 // Purge empty non-accessible directory
 Log.i(TAG, "Removing empty directory for ${download.name}, ${versionCode.name}")
 versionCode.deleteRecursively()
 } else {
 versionCode.deleteIfOld()
 }
 }
 }

 return Result.success()
}

Sharing Data with/from Workers
This and That

• Possible to share data with Workers using setInputData() method

• Also possible to share data from Workers using setProgress() method

• Shared data can be observed from the UI using LiveData or Kotlin Flows

• Data can be built with Data.Builder()

18

private fun trigger(download: Download) {
 val inputData = Data.Builder()
 .putString(DOWNLOAD_DATA, gson.toJson(download))
 .build()

 val work = OneTimeWorkRequestBuilder<DownloadWorker>()
 .addTag(DOWNLOAD_WORKER)
 .addTag("$PACKAGE_NAME:${download.packageName}")
 .addTag("$VERSION_CODE:${download.versionCode}")
 .addTag(if (download.isInstalled) DOWNLOAD_UPDATE else DOWNLOAD_APP)
 .setExpedited(OutOfQuotaPolicy.DROP_WORK_REQUEST)
 .setInputData(inputData)
 .build()

 // Ensure all app downloads are unique to preserve individual records
 WorkManager.getInstance(context)
 .enqueueUniqueWork(
 "${DOWNLOAD_WORKER}/${download.packageName}",
 ExistingWorkPolicy.KEEP, work
)
}

Final Thoughts
Work or Not?

• Good but not perfect replacement for FGS with data-sync tasks

• Just another yearly migration

20

Thank You!

