Migrating from Foreground
Service to WorkManager

Aayush Gupta

BT K2 NTUST @ Taiwan
August 03 - 04, 2024

https://coscup.org

PR &

Conference for Open Source Coders, Users & Promoters

About Me

* |Independent Contractor

* Android Developer @ The Calyx
Institute, working on CalyxOS

o Senior Staff Member, DevRel @
XDA Developers (Forums

 FOSS Developer & Contributor

Index

 Running background tasks in Android
* |Introduction to WorkManager

 WorkManager in action

Running Background Tasks

Service
Golden Days of Background Tasks

 Simple & easy, no need for
notifications or permission

* Deprecated from Android 8.0+,
will crash app If used

o System apps can still run
background services (not-
recommended)

Foreground Service
This 1s Was The Way

 The de-facto way to run
background tasks now,
backwards compatible too

 Needs an ongoing notification
and bunch of permissions

* Android 12 blocks starting FGS
from background unless a
permitted use case

—

Foreground Service
It’s Still Relevant Though

* Since Android 14, Foreground Service types are required as well as a
dedicated permission for the specific type

* Additionally, Android 14 recommends migrating to WorkManager for data-
sync related jobs

* Android 15 will impose 6 hour time limit on data-sync type services

* Other than data-sync related jobs, Foreground Services are still the preferred
way to run background jobs

Introduction to WorkManager

WorkManager

The Cool Kid in the Block

* The primary recommended API for background processing

* Built-upon the Job Scheduler, Foreground Service, and more APls
 Simple to use and manage

 Compatible with both Java and Kotlin, no dependency upon play services
* Allows to specify multiple constraints to the work as well

* One time and periodic are some of the most used work types

10

Expedited Work

Right Now, Hopefully

* Expedited work runs immediately on triggering

* Requires specifying method while building work

» Affected by App Standby Quotas and Doze restrictions

* Choice to drop work or run as non-expedited on quota exhaustion

* Periodic work cannot be expedited

11

Long-Running Work

10 Minutes Not Enough?

 Works are allowed a time-limit of 10 minutes by the OS

* Long-running work should be considered in case more time Is required

* Requires calling and overriding methods
* Delegated to FGS above Android 12

o Affected by FGS restrictions too (permissions, constraints, etc)

12

WorkManager in Action

Constraints
Work, But When?

 WorkManager allows specifying several constraints for works
* Build with and apply using method

* Developers can restrict running works based on metered/unmetered data,
battery levels, device activity and more

* Fine-grained network control coming in WorkManager 2.10

* Possible to update existing work constraints too

14

private const val TAG = "UpdateWorker"
private const val UPDATE WORKER = "UPDATE WORKER"

fun scheduleAutomatedCheck(context: Context) {
Log.1(TAG, "Scheduling periodic app updates!")

WorkManager.getInstance(context)
.enqueuelUniquePeriodicWork (UPDATE WORKER, KEEP, buildUpdateWork(context))

private fun buildUpdateWork(context: Context): PeriodicWorkRequest {
val updateCheckInterval = Preferences.getInteger(
context,
PREFERENCE UPDATES CHECK INTERVAL,
3
) . toLong()

val constraints = Constraints.Builder()
.setRequiredNetworkType (NetworkType . UNMETERED)
.setRequiresBatteryNotLow(true)

1f (1sMAndAbove()) constraints.setRequiresDeviceldle(true)

return PeriodicWorkRequestBuillder<UpdateWorker> (
repeatInterval = updateCheckInterval,
repeatIntervalTimeUnit = HOURS,
flexTimeInterval = 30,
flexTimeIntervalUnit = MINUTES

) .setConstraints(constraints.build()).build()

Working

The Time is Now

 Developers can do their task in the method
 Automatically ran in background thread

e Returns a INn the end

16

override suspend fun doWork(): Result {
Log.1(TAG, "Cleaning cache")

PathUtil.getOldDownloadDirectories (appContext).forFach { downloadDir -> // Downloads
Log.1(TAG, "Deleting old unused download directory: S$downloadDir")
downloadDir.deleteRecursively()

}

PathUtil.getDownloadDirectory(appContext).listFiles()?.forFach { download -> // com.example.app
// Delete if the download directory is empty
1f (download.listFiles().1sNullOrEmpty()) {
Log.1(TAG, "Removing empty download directory for ${download.name}")
download.deleteRecursively(); return@forEach

}
download.listFiles()!!.forEach { versionCode -> // 20240325
1f (versionCode.listFiles().1sNullOrEmpty()) {
// Purge empty non-accessible directory
Log.1(TAG, "Removing empty directory for ${download.name}, S{versionCode.name}")
versionCode.deleteRecursively()
} else {
versionCode.deleteIf0O1d()
}
}

}

return Result.success()

Sharing Data with/from Workers

This and That
* Possible to share data with Workers using method
* Also possible to share data from Workers using method

 Shared data can be observed from the Ul using LiveData or Kotlin Flows

« Data can be built with

18

private fun trigger(download: Download) {
val i1nputData = Data.Builder ()
.putString (DOWNLOAD DATA, gson.todJson(download))
.build()

val work OneTimeWorkRequestBuililder<DownloadWorker> ()
.addTag (DOWNLOAD WORKER)
.addTag (" SPACKAGE NAME:S${download.packageName}")
.addTag("SVERSION CODE:${download.versionCode}")
.addTag(1f (download.isInstalled) DOWNLOAD UPDATE else DOWNLOAD APP)
. setExpedited (OutOfQuotaPolicy.DROP WORK REQUEST)
.setInputData(inputData)
.build()

// Ensure all app downloads are unique to preserve individual records
WorkManager.getInstance(context)
.enqueuelUniqueWork (
"S{DOWNLOAD WORKER}/${download.packageName}",
ExistingWorkPolicy.KEEP, work

Final Thoughts

Work or Not?

* (Good but not perfect replacement for FGS with data-sync tasks

* Just another yearly migration

20

Thank You!

